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Abstract. The Spherical Code (SC) problem has many important applications in such fields as
physics, molecular biology, signal transmission, chemistry, engineering and mathematics. This paper
presents a bilevel optimization formulation of the SC problem. Based on this formulation, the concept
of balanced spherical codeis introduced and a new approach,the Point Balance Algorithm(PBA), is
presented to search for a 1-balanced spherical code. Since an optimal solution of the SC problem (an
extremal spherical code) must be a 1-balanced spherical code, PBA can be applied easily to search
for an extremal spherical code. In addition, given a certain criterion, PBA can generate efficiently an
approximate optimal spherical code on a sphere in then-dimensional space<n. Some implementa-
tion issues of PBA are discussed and putative global optimal solutions of the Fekete problem in 3, 4
and 5-dimensional space are also reported. Finally, an open question about the geometry of Fekete
points on the unit sphere in the 3-dimensional space is posed.
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1. Introduction

A spherical code is a finite collection of points on then-dimensional unit sphere.
The Spherical Code(SC) problem is referred to as how to distribute points on
the unit sphere according to a certain ‘generalized energy’. The SC problem has
been the focus of research in various fields such as physics [1], molecular bio-
logy [9, 28], signal transmission [39], chemistry [40], engineering and mathem-
atics [4, 23, 24, 29]. Some well-known problems, such asthe Tammes problem
(the best-packing problem),the Fekete problem(the minimal potential energy ar-
rangements),the best-covering problem, the maximal volume arrangementsand
the t-designs problem, can be considered as SC problems with different objectives
[5, 25]. Given a certain form of the generalized energy, a special spherical code
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can be generated via optimization to satisfy some constraints and performance
measures. Hence, the SC problem has a strong connection with optimization.

The Tammes problem, which is defined as how to placeN points on a sphere in
then-dimensional space so as to maximize the minimal distance (or equivalently
the minimal angle) between any two points, is one of the most studied SC problems
in the mathematical literature [4]. Without loss of generality, the sphere is normal-
ized to a radius of 1. Given an integerN > 2, the Tammes problem is equivalent
to the following optimization problem:

ET = max
‖xi‖=1, 16i6N

min
16j<k6N

∥∥xj − xk∥∥ , (1)

wherexi ∈ <n and the vector norm‖ · ‖ is the Euclidean norm. The Tammes
problem can also be stated equivalently as the best-packing problem: how to pack
N non-overlapping identical circles (or spherical caps) on the sphere such that the
size of the circles is as large as possible. The three-dimensional case of the Tammes
problem and the related problem, whether or not the optimal packing is essentially
unique, were first raised by the Dutch botanist P.M.L. Tammes in connection with
the distribution of pores on pollen grains [18, 28].

In this paper, we introduce a formulation of the SC problem based on bilevel
optimization. In our discussion, we adopt the following ‘generalized energy’ [13,
21–23]. LetSn = {x| ‖x‖ = 1} denote the unit sphere andx = (x1, x2, . . . , xn)T

denote a point in then-dimensional real space<n. Let N > 2 be an integer and
parameters ∈ <. Let PnN denote a spherical code withN points onSn, i.e., a
set of unit vectors in<n (may require them to be mutually different for a certain
value of the parameters). Thes-energyassociated with the spherical codePnN ={x1, x2, . . . , xN } can be defined by

ω(s, P nN) =


∑
i<j

‖ xi − xj ‖−s if s 6= 0∑
i<j

ln

(
1‖ xi − xj ‖

)
if s = 0.

(2)

Thes-extremal energyEN(s) for N points onSn is defined by

EnN(s) =


min
PnN⊂Sn

ω(s, P nN) if s > 0

max
PnN⊂Sn

ω(s, P nN) if s < 0.
(3)

The spherical codePn,∗s,N = {x∗s,1, . . . , x∗s,N } is calledthe s-extremal spherical code
if it satisfies

ω(s, P
n,∗
s,N) = EnN(s).

The points in the 0-extremal spherical codePn,∗0,N are calledlogarithmic extreme
pointsor elliptic Fekete points[33]. Clearly, the elliptic Fekete points maximize
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the product of the distances between any two points inPnN , i.e.,

max
‖xi‖=1, 16i6N

∏
16j<k6N

‖xj − xk‖.

Given a large integerN , there are many saddle points and various symmetries in
PnN , and it is very difficult to minimize the 0-energy associated withPnN [24]. It is
one of the most challenging problems for the next century as proposed by S. Smale
even to find a good approximation to the elliptic Fekete points in the 3-dimensional
space for any integerN > 2 [26]. Reference [21] provides numerical evidence that
the generalized spiral points have the following property:

ω(0, P nN )− EnN(0) 6 114 logN,

when the number of points isN 6 12000.
The points in the 1-extremal spherical codePn,∗1,N are calledFekete points[5]. Let

us considerN point charges on a unit conducting sphere, interacting only through
their mutual Coulomb forces. What is the configuration of the charges for which
the Coulombic energy is minimized? This question was original raised by Thomson
for 26 N 6 100 [38], and has since been investigated by many researchers [1, 6–
8, 21, 22]. The Fekete points in the 3-dimensional space represent the locations of
N charged particles on the unit sphere that repel each other according to Coulomb’s
law. Hence, the Fekete problem in the 3-dimensional space is the same asthe
Thomson problem.

As s→+∞, with N fixed, thes-energy is increasingly dominated by the term
involving the smallest distance. Hence,(ω(s, PN))

1/s → 1/min
i 6=j
‖ xi − xj ‖ ass→

+∞. In this sense, thes-extremal energy problem leads to the Tammes problem. In
the following discussion,s = +∞ is often used to indicate the Tammes problem.

There are many results about the upper, lower bounds and asymptotics for thes-
extremal energy, such as the bounds ofEnN(s) for 0< s < n−1 and 36 n < s+1
[13, 21, 36, 37]; for−2 < s < 0, n = 3 [21, 37]; fors = 0, n = 3 [21, 35]; for
s = +∞, n = 3 [12, 15, 31, 32, 34] and asymptotics ofEnN(s) asN → +∞ for
n = s+1> 3 [13]; s = −1, n = 3 [21, 41];s = 1, n = 3 [13, 21, 23];s = 0, n =
3 [21, 35, 41];s = +∞, n = 3 [34]. There are also some results about the lower
bounds for the separation of any pair of points in ans-extremal spherical code, such
ass = 1, n = 3 [5]; s > n−1, n > 3 [13]; s = 0, n = 3 [22] and−2< s < 0, n =
3 [27]. For the case wheres 6 −2, it is known that some equilibrium points may
coincide [2]. Several conjectures, concerning the asymptotic behavior ofE2

N(s),
have been presented fors ∈ (−2,2) ands > 2, which are based on some numerical
experiments [13, 21, 23]. In addition, other types of the packing problems with
equal circles have been studied. For the problem of finding the maximum diameter
of N equal mutually disjoint circles inside a unit square, exact solutions exist for
N = 1, . . . ,10,16,25,36 [10, 16].

Numerical studies on determining the extremal energyEnN(s) and searching
for the related extremal spherical codePn,∗s,N have been conducted along with the-
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oretical work on bounds and asymptotic behaviors of the extremal energy. There
are many methods used or proposed to allocate the points on the sphere, such as
constrained global optimization based on Glauber spin flip probability and Met-
ropolis algorithm [1], simulated annealing [6], Monte Carlo simulation [8], the
gradient method and quasi-Newton method [22]. Many numerical results for the
sphere in the 3-dimensional space are provided, which include more extensive and
accurate putative global solutions fors = −1,0,1 [1, 6–8, 11, 22]. Some global
optimization methods for the SC problem and results about the spherical code of
the Tammes problem in 4 and 5 dimension can be found in [18].

In this paper, we present a new formulation for the SC problem based on bilevel
optimization and introduce the concept of the balanced spherical code and a new
strategy for distributing points on then-dimensional unit sphere. Our strategy,the
point balance algorithm(PBA), is based on the simple idea that every point has the
same significance at the beginning of distribution.

The paper is organized as follows: In Section 2, a characterization of thes-
extremal spherical codes is presented. The concept ofL-balanced spherical codeis
introduced at the end of Section 2. In Section 3, the point balance algorithm, which
is based on the necessary condition fors-extremal spherical code, is presented and
its convergence property is established. In Section 4, implementation issues are
discussed and numerical results for the Fekete problem in 3, 4 and 5-dimensional
space are reported.

2. A Characterization of the S-Extremal Spherical Code

A s-extremal spherical code forN (N > 2) points is a globally optimal solution of
the following constrained minimization problem:

min fs(PN)
4= fs(x1, x2, . . . , xN ) (4)

s.t. xi ∈ Sn,∀i = 1, . . . , N (5)

where

fs(PN) =
{
ω(s, PN) if s > 0
−ω(s, PN) if s < 0.

For convenience, in the following discussion, we definefs({x}) = 0 for any
x ∈ Sn. If we decompose the setI = {1,2, . . . , N} into two disjoint subsets
I+ andI−, and denote the sub-spherical codes{xj |xj ∈ PN, j ∈ I±} of PN as
PN(I

±), then we can decompose the objective functionfs(PN) into three parts

fs(PN) = fs(PN(I+))+ fs(PN(I−))+ fs(PN(I+), PN(I−))
where

fs(PN(I
±)) =

∑
i<j∈I±

fs({xi, xj })
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fs(PN(I
+), PN(I−)) =

∑
i∈I+,j∈I−

fs({xi, xj }).

Therefore, the global optimization problem (4)∼(5) can be transformed into the
following equivalent one, which is a bilevel optimization problem [17, 19]:

min {fs(PN(I−))+ f̄s(PN(I−))} (6)

s.t. xi ∈ Sn,∀i ∈ I− (7)

wheref̄s(PN(I−)) is the global optimal value of the sub-problem:

min {fs(PN(I+))+ fs(PN(I+), PN(I−))} (8)

s.t. xj ∈ Sn,∀j ∈ I+. (9)

The Tammes problem (i.e.,s = +∞) has a similar equivalent form of bilevel
optimization, but the functionf∞({xi, xj }) should be defined by 1/‖ xi − xj ‖ and
1/0 should be regarded as∞. The arithmetic operation

∑
or+ should be replaced

by the operationmax.
Most bilevel optimization problems are NP-hard from the complexity point of

view [17, 19]. In general, computing locally optimal solutions is not easier than
finding globally optimal solutions. It has been shown that the problem of checking
local optimality for a feasible point and the problem of checking whether a local
minimum is strict, are NP-hard [20]. Whether the bilevel optimization (6)∼(9) is
NP-hard or not, is still an open problem.

For the bilevel global optimization problem (6)∼(9), PN(I−) andPN(I+) are
referred to asthe reference codeand the active code, respectively. SetsI− and
I+ are calledthe reference index setand the active index set, respectively. The
following characterization can be obtained for thes-extremal spherical codePn,∗s,N
(denoted byP ∗s,N below).

THEOREM 2.1. A spherical codePN is a globally optimal solution of the problem
(4)∼(5), if and only if, given anyI− ⊂ I = {1, . . . , N} as a reference index set,
and the active index setI+ = I\I−, the sub-spherical codePN(I+) is a globally
optimal solution of the problem(8)∼(9).

Proof.The necessity holds obviously. We only prove the sufficiency.
For any spherical codePN ⊂ Sn of N points which satisfies the hypothesis,

define a function associated with it on the setG = { P ∗s,N |P ∗s,N is the solution of
problem (4)∼(5)} by

g(PN, P
∗
s,N) =

∑
i∈I

δ(xi − x∗s,i)

whereP ∗s,N ∈ G and the real-valued functionδ(x) satisfies the condition that
δ(0) = 1 andδ(x) = 0 if x 6= 0. Let gM = supP ∗s,N∈G g(PN, P

∗
s,N ). Obviously,

1 6 gM 6 N . In particular,gM = N if and only if PN ∈ G. Next, we prove that
gM = N .
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SincegM is a natural number, there exists aP ∗s,N ∈ G such thatgM = g(PN, P ∗s,N)
by definition of the supremum. LetI− = {i | δ(xi − x∗s,i) = 1}. It is clear that
fs(PN(I

−)) = fs(P ∗s,N(I−)). If the number of elements inI− equals toN , then we
getgM = N ; otherwise, letI+ = I\I− be active index set. We now consider the
problem (8)∼(9) corresponding to the reference index setI−.

According to the hypothesis thatPN(I+) is a global solution of (8)∼(9), and
P ∗s,N ∈ G, we obtain

fs(PN(I
+))+ fs(PN(I+), PN(I−)) 6 fs(P ∗s,N(I+))

+ fs(P ∗s,N(I+), P ∗s,N(I−) = EN(s)− fs(P ∗s,N(I−))).
Thus,PN is a solution of (4)∼(5), i.e.,PN ∈ G. ThereforegM = g(PN, PN) = N .
This indicates that the setG contains all spherical codes such asPN satisfying the
hypothesis. 2
DEFINITION 2.1. Given an integerL ∈ [1, N), a spherical codePN ⊂ Sn is
called the L-balanced spherical code if, for any subsetU ⊂ I = {1, . . . , N}
with the size L,PN(U) is a globally optimal solution of the problem(8)∼(9) cor-
responding toUc = I\U as the reference index set. In particular, a spherical
codePN ⊂ Sn is called the1-balanced spherical code if,∀i ∈ I , xi ∈ PN is a
globally optimal solution of the problem(8)∼(9) corresponding toIi = I\{i} as
the reference index set.

COROLLARY 2.1. If a sphere codePN is a globally optimal solution of the
problem (4)∼(5), thenPN is a L-balanced spherical code for any integerL ∈
[1, N).

3. A Point Balance Algorithm and its Convergence

Based on Corollary 2.1, apoint balance algorithm(PBA) is presented to search for
a 1-balanced spherical code in order to solve the SC problem. A detailed descrip-
tion of this algorithm is first presented, followed by the proof of convergence of
the point balance algorithm. Some remarks about PBA are given at the end of this
section. Note that PBA can be extended to search for aL-balanced spherical code.

ALGORITHM 1. The Point Balance Algorithm (PBA)
Step 1: Set the error toleranceε > 0 and the parametersN, n, s. Begin with a

randomly (or otherwise) chosen initial spherical code on the unit sphere
Sn, denoted byP (0)N . Setk = 0 and the strategy indexSIk = 1.

Step 2: At thekth iteration, choose the strategy for modifying the iterateP
(k)
N . The

exploratory spherical codêP (k)N = {x̂(k)1 , . . . , x̂
(k)
N } is set by one of the

following strategies. IfSIk = 1, then go to Step 3; otherwise, go to Step 4.
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Step 3: Strategy 1:
For everyx(k)i ∈ P (k)N , compute a point̂x(k)i ∈ Sn such that

fs({x̂(k)i }, P (k)N (Ii)) = min
y∈Sn

fs({y}, P (k)N (Ii)). (10)

Go to Step 5.
Step 4: Strategy 2:

For i = 1, . . . , N , let I−i = {j |j < i}, I+i = {j |j > i} (may be an empty
set) and compute a pointx̂(k)i ∈ Sn such that

fs({x̂(k)i }, P̂ (k)N (I−i ) ∪ P (k)N (I+i ))

= min
y∈Sn fs({y}, P̂

(k)
N (I−i ) ∪ P (k)N (I+i )).

Go to Step 5.
Step 5: If fs(P̂

(k)
N ) < fs(P

(k)
N ), find the valueλ∗ that minimizes the function

fs(g(θ
(k)
N + λ (θ̂ (k)N − θ(k)N ))), whereθ(k)N and θ̂ (k)N are the hyperspherical

coordinates of the spherical codesP (k)N andP̂ (k)N , respectively.g(•) is the
transformation from the hyperspherical coordinates of some points into
their Cartesian coordinates (see (13)∼(14) of Section 4 later). LetP (k+1)

N

be the spherical codeg(θ(k)N + λ∗ (θ̂ (k)N − θ(k)N )) and set the strategy index
SIk+1 = 1. Otherwise, let

i∗ = argmin{fs({x̂(k)i } ∪ P (k)N (Ii))| i ∈ I }.
LetP (k+1)

N be the spherical code{x̂(k)i∗ }∪P (k)N (Ii∗) and set the strategy index
SIk+1 = 2.

Step 6: If fs(P
(k+1)
N ) > fs(P

(k)
N )−ε, terminate PBA and output the spherical code

P
(k+1)
N together with its objective function value; otherwise, setk← k+1

and go to Step 2.

We give an example to illustrate how PBA works with the SC problem. Let us
consider an instance of the Fekete problem:

EXAMPLE 1.

min f1(P3) = f1(x1, x2, x3)

s.t. xi ∈ S2 = {x | xT x = 1, x ∈ <2}, i = 1,2,3.

Variablesx1, x2, x3 are coordinates of three pointsA,B,C, respectively. Suppose
that codeP (k)3 = {x(k)1 , x

(k)
2 , x

(k)
3 } is obtained at a certain iteration, where

x
(k)
1 = (−0.8,−0.6)T , x(k)2 = (0.8,−0.6)T , x(k)3 = (−0.8,0.6)T .

It corresponds to an objective function valuef1(P
(k)
N ) = 1.95833.
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When Strategy 1 is used to modifyP (k)3 , we have

x̂
(k)

1 = (−0.6,−0.8)T , x̂(k)2 = (1,0)T , x̂(k)3 = (0,1)T

by minimizing f1(P3) with respect toxi while xj = x
(k)
j (j 6= i) are fixed, for

i = 1,2,3. These vectors correspond to an exploratory spherical codeP̂
(k)
3 =

{x̂(k)1 , x̂
(k)

2 , x̂
(k)

3 } with objective function valuef1(P̂
(k)

3 ) = 1.79317. The points
A1, B1, C1, which correspond tôP (k)3 , are shown in Figure 1.

When Strategy 2 is used to modifyP (k)3 , we have

x̄
(k)

1 = (−0.6,−0.8)T , x̄(k)2 = (0.98995,0.14142)T ,

x̄
(k)
3 = (−0.50949,0.86047)T

by minimizing f1(P3) with respect toxi while xj = x̄
(k)
j (j < i) andxj = x

(k)
j

(j > i) are fixed, for i= 1,2,3. These vectors correspond to another exploratory
spherical codeP̄ (k)3 = {x̄(k)1 , x̄

(k)

2 , x̄
(k)

3 } with objective function valuef1(P̄
(k)

3 ) =
1.74389. The pointsA2, B2, C2, which correspond tōP (k)3 , are shown in Figure 2.

Based on any of these exploratory codes and their equivalent forms in polar
coordinates, line search can be used to search for a better code.

&%
'$
rA r B
rC
bA1

b
B1

bC1

Figure 1.Example for Strategy 1.

&%
'$
rA r B
rC
bA2

bB2

bC2

Figure 2.Example for Strategy 2.

From the point balance algorithm, we can see that{fs(P (k)N )} is a monotonic
decreasing sequence ask becomes larger and is bounded below. Therefore, PBA
will terminate after certain iterations. We give the following conclusion about the
convergence of the point balance algorithm as the error toleranceε tends to zero.

THEOREM 3.1. LetCN be the set including all feasible spherical codes withN
points onSn (some feasible codes may have some identical points for certain value
of the parameters). Letfs be a real-valued function defined by(4) onCN . Given a
codeP (0)N ∈ CN , fs(P

(0)
N ) = α, define a level set

L(fs, α) = {PN |PN ∈ CN, fs(PN) 6 α}.
Assume thatfs is continuous onL(fs, α). Let {P (k)N } be the sequence of codes
generated by the point balance algorithm. Fork = 0,1,2, · · · , if the following
condition holds:

fs(P
(k+1)
N ) 6 min

i∈I
fs({x̂(k)i } ∪ P (k)N (Ii)), (11)
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wherex̂(k)i is defined by(10), I = {1, . . . , N} and Ii = I\{i}, then every cluster
pointP ∗N of {P (k)N } is a1-balanced spherical code. In particular, fors ∈ (−∞,+∞],
if fs is continuously differential atP ∗N , then∇fs(P ∗N) = 0, where∇fs is calculated
with respect to the spherical coordinates of points.

Proof. If {P (k)N |k = 0,1, · · · } is a finite set, then PBA terminates atP (K)N , where
K is the number of iterates. Clearly,P (K)N is a 1-balanced spherical code.

Without loss of generality, suppose that{P (k)N |k = 0,1, · · · } is an infinite sub-
set ofL(fs, α). Because{fs(P (k)N )} is a monotonic decreasing sequence and is
bounded below, it has a limit. In addition,Sn is a compact set and it follows from
the Bolzano-Weierstrass theorem that there exists a subsequence{P (km)N } of {P (k)N }
that converges toP ∗N .

If P ∗N is not a 1-balanced spherical code, then there exists a natural numberp

such that

fs({x̂∗p}, P ∗N(Ip)) = min
y∈Sn fs({y}, P

∗
N(Ip)) < fs({x∗p}, P ∗N(Ip)).

Let P̂ ∗N,p be{x̂∗p} ∪ P ∗N(Ip); thenP̂ ∗N,p is an interior spherical code ofL(fs, α) and

ε = fs(P ∗N)− fs(P̂ ∗N,p) > 0.

Based on continuity offs onL(fs, α) and lim
m→+∞P

(km)
N = P ∗N , we get

lim
m→+∞ fs(P

(km)
N ) = fs(P ∗N)

lim
m→+∞ fs({x̂

∗
p} ∪ P (km)N (Ip)) = fs({x̂∗p} ∪ P ∗N(Ip)).

For sufficiently largekm, the following inequality holds

fs({x̂∗p} ∪ P (km)N (Ip))

6 fs({x̂∗p} ∪ P ∗N(Ip))+ ε/2
= fs(P ∗N)− ε/2.

Since x̂(km)p is a globally optimal solution of min
y∈Sn fs({y} ∪ P

(km)
N (Ip)) and the

hypothesisfs(P
(km+1)
N ) 6 fs({x̂(km)p } ∪ P (km)N (Ip)) holds, we have

fs(P
∗
N) < fs(P

(km+1)
N ) 6 fs({x̂(km)p } ∪ P (km)N (Ip)) 6 fs(P ∗N)− ε/2,

which is a contradiction from the monotonicity of the sequence{fs(P (k)N )}. Hence,
P ∗N must be a 1-balanced spherical code. Based on the necessary condition of a
local minimal point and the spherical coordinates of points,∇fs(P ∗N) = 0 holds
for s ∈ (−∞,+∞] if fs is continuously differential atP ∗N . 2
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REMARK. The conclusions in Theorem 3.1 still hold if the condition (11) is
replaced by the following one: fork = 0,1, · · · , if

I (k) = {i | fs({x̂(k)i }, P (k)N (Ii)) < fs({x(k)i }, P (k)N (Ii))}
is not an empty set, there exists a natural numberp ∈ I (k) such that

fs(P
(k+1)
N ) 6 fs({x̂(k)p } ∪ P (k)N (Ip)), (12)

wherex̂(k)i is defined by (10).

From Theorem 3.1 about convergence of PBA, the algorithm seems to solve
N global optimization problems with respect to everyi ∈ I . In order to find a
1-balanced spherical code, we do not need to get a globally minimal solution for
every point due to the following reason: ‘Global’ and ‘local’ are relative concepts
in the spherical code problem. When the separation of any pair of points in the
s-extremal spherical code (such ass > −2) exists, the effect of one large change
at one point is approximately equivalent to that of many small changes at multiple
points simultaneously. Hence, it is sufficient to conduct a series of local optimiz-
ations for each point in order to find or approximate a 1-balanced spherical code
for parameters > −2. That is, we can use the following operation in place of the
global optimization in Step 3 and 4 of PBA: Determine a closed neighborhoodU

(k)
i

of xi for everyi ∈ I at thekth iteration and find a local minimal solution inU(k)
i

with respect toith point of P̂ (k)N . For a certain value of the parameters, it may be
required that the neighborhoodU(k)

i of xi does not include other points. We also
note that global optimization for a single point (not all points) is needed in order to
assure that PBA is robust for the parameters 6 −2.

4. Some Implementation Issues About PBA

Note that PBA can be used to distribute points on any sphere in a generaln-
dimensional space and determine thes-extremal energy. In the following, PBA
is used to distribute points on the unit sphere in 3, 4 and 5-dimensional spaces and
to determine the 1-extremal energy. Numerical experiments were conducted with
an AMD K6-2/300 CPU processor, 64M memory andMATLAB 5.3.

Numerical results are presented in Table 1. Table 1 includes the number of
points which range from 2 to 50, the dimension of space and the corresponding
1-extremal energy. In the 3-dimensional case, we have actually obtained the 1-
extremal energy and the 1-extremal spherical codes (Fekete points) corresponding
to the number of points ranging from 51 to 100. Our results for 51 to 100 points
in the 3-dimensional space is similar to those reported in [11, 22], and thus are
not listed here. It is also found that the number of equilibrium meta-stable states
increases fast whenN is large and all these meta-stable states have very close
energies between 0.001 and 0.12 . Furthermore, we have found that the differences
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of energies among these meta-stable states can not be very close (such as not less
than 1.0e–6). If we can find a spherical code whose corresponding energy is close
to the extremal energy at this error level, then this spherical code is very close to
the extremal spherical code and can be improved to the extremal one by a powerful
high precise local optimization algorithm. Given the number of points and the
dimension of the space, PBA outputs the 1-extremal energy and its corresponding
extremal spherical code. We let PBA be executed 20 times independently for every
case and the initial code is chosen randomly before each execution. Computational
times reported in Table 1 indicate the time it takes in the execution of finding the
1-extremal energy.

In the following, we discuss some implementation issues of the PBA algorithm.
The constrained minimization problem (4)∼(5) can be transformed into the fol-
lowing unconstrained minimization problem:

minfs(PN)
4= fs(g(θ1), . . . , g(θN)),

wherexi = g(θi) = (G1(θi), . . . ,Gn−1(θi), Ĝn−1(θi))
T andθi is the hyperspher-

ical coordinate of the pointxi , i ∈ I = {1, . . . , N}. The transformation from the
hyperspherical coordinateθi of a point into its Cartesian coordinatexi is defined in
[18] by

xki = Gk(θi)
4= cos(θki )

k−1∏
t=1

sin(θ ti ), (13)

xni = Ĝn−1(θi)
4=
n−1∏
t=1

sin(θ ti ), (14)

wherek = 1, . . . , n − 1 andi ∈ I . It is easy to see thatxi ∈ Sn,∀i ∈ I . By the
periodical property of the trigonometric function,θn−1

i ∈ [0,2π ] andθ ti ∈ [0, π ],
for t = 1, . . . , n−2. Let us denote the domain ofθ by2. This requirement reduces
the search space, but it does not further restrict the problem.

The following strategy is also used in the implementation of PBA: The effect
of one large change at one point is approximately equivalent to that of many small
changes at multiple points simultaneously. We determine a closed neighborhood
U
(k)
i = {θ | |θn−1 − θn−1

i | 6 0.4, |θ t − θ ti | 6 0.2, t = 1, . . . , n − 2} for eachxi
in the hyperspherical coordinate space at thekth iteration. Certainly, the size of
U
(k)
i can be adjusted arbitrarily. Then we find a minimal solution of the function

fs({g(θ)}, PN(Ii))with respect toθ ∈ U(k)
i by the pattern search algorithm [14, 30]

and transform the solution into the domain2. Because the relative positions of
points (i.e., structure of points) in the spherical code is more important than a single
point’s global minimal position or local minimal position, we can use a certain
inexact algorithm to solve for the single point optimization problem in Step 3 and
Step 4 of PBA, or adjust the size of neighborhood for every point, or allow the
objective function value to increase a little in Step 5 of PBA.
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Table 1. The EnergyEN(1) and Running Time (seconds) of PBA

Dimension of Space
N 3 4 5

Energy Time Energy Time Energy Time

2 0.5000000000 0.54 0.5000000000 0.86 0.5000000000 1.08
3 1.7320508076 1.22 1.7320508076 1.61 1.7320508076 3.04
4 3.6742346142 2.56 3.6742346142 2.58 3.6742346142 2.68
5 6.4746914947 2.66 6.3245553203 4.45 6.3245553204 3.22
6 9.9852813742 3.34 9.8280626463 5.26 9.6824583656 9.13
7 14.4529774142 5.17 14.0457593066 8.36 13.8915667961 11.24
8 19.6752878612 5.12 18.9705627485 7.79 18.8133440201 10.71
9 25.7599865313 7.95 24.8524723508 13.26 24.4452542432 18.88
10 32.7169494602 9.80 31.4414887344 17.54 30.7842712475 16.02
11 40.5964505082 11.50 38.8506628312 14.49 38.0803944122 23.31
12 49.1652530576 9.27 46.9772958043 13.68 46.0819991823 46.13
13 58.8532306117 12.87 56.0101273884 25.40 54.8414687111 59.68
14 69.3063632966 15.16 65.7725600449 18.07 64.3867543861 53.33
15 80.6702441143 24.00 76.3195838169 32.88 74.6446557516 59.16
16 92.9116553025 23.15 87.7825427621 41.61 85.6062329787 43.10
17 106.0504048286 26.35 100.0452496480 49.24 97.5413901586 86.65
18 120.0844674475 28.80 113.0728017807 70.90 110.2043928673 107.70
19 135.0894675567 33.11 126.9020228810 52.17 123.5951332472 96.74
20 150.8815683338 26.11 141.4633972296 68.04 137.6909394839 131.45
21 167.6416223993 45.34 156.9553620096 57.36 152.5634382327 106.42
22 185.2875361493 59.31 173.2994494671 98.21 168.4101533365 164.74
23 203.9301906629 62.27 190.4671590599 75.62 185.0042835723 149.92
24 223.3470740518 69.57 208.3373140876 94.75 202.3286626413 290.58
25 243.8127602988 68.77 227.1149670164 135.11 220.4056756676 180.71
26 265.1333263174 82.64 246.7116655734 150.11 239.2681370939 207.86
27 287.3026150330 102.27 267.1093955520 145.11 258.9793171561 281.58
28 310.4915423582 91.77 288.3353711326 175.51 279.4070088120 251.24
29 334.6344399204 136.52 310.3764656412 175.43 300.5862888064 295.40
30 359.6039459038 118.43 333.2591076218 234.00 322.5010963461 251.24
31 385.5308380634 115.93 356.9706923760 206.26 345.3071291545 395.42
32 412.2612746506 122.77 381.4576933643 158.90 368.7988169660 332.97
33 440.2040574479 127.59 406.7037565663 214.93 393.2984985854 480.10
34 468.9048532816 143.01 432.8171270786 240.99 418.5194699262 434.31
35 498.5698724907 150.86 459.9044158715 244.80 444.5351117287 526.48
36 529.1224083754 172.61 487.7461934186 298.24 471.2611700625 544.51
37 560.6188877310 189.72 516.3511306143 239.25 498.8414511878 492.23
38 593.0385035665 213.91 545.8403071907 317.29 527.1578481603 506.69
39 626.3890090168 228.73 576.1753571984 391.86 556.2545481522 675.04
40 660.6752788347 211.38 607.3059497544 358.13 586.0597565361 476.59
41 695.9167443419 218.56 639.2175331832 424.79 616.7855371793 484.78
42 732.0781075437 227.24 671.9323207345 524.31 648.2674257264 696.94
43 769.1908464594 285.10 705.4796399257 615.25 680.5772238874 802.41
44 807.1742630847 280.88 739.9028485970 446.70 713.6201171224 897.21
45 846.1884010611 325.48 775.1956954657 457.13 747.4599144210 785.83
46 886.1671136394 273.82 811.3883244928 508.79 782.1046050131 1049.13
47 927.0592706797 395.41 848.3771636310 615.39 817.5515554672 888.92
48 968.7134553438 378.05 886.1431085825 631.18 853.7564440154 1371.80
49 1011.5571826536 403.96 924.7333926864 802.29 890.7390584591 1000.52
50 1055.1823147264 330.06 964.0848033638 562.03 928.5425407307 1107.71
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In order to accelerate the process of searching for the extremal spherical code,
the algorithm calls the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton
algorithm at the final stage (the amount of decrease in the objective function is
less than 0.1) and uses a simple quadratic/cubic interpolation algorithm for the line
search [3]. This kind of accelerating strategy can be implemented by calling the
subroutinefminu.min MATLAB 5.3.

The proof of Theorem 3.1 shows that a decrease of the objective function cor-
responding to a certain point in a spherical code is essential in searching for a
1-balanced spherical code. Therefore, in the point balance algorithm, we should
pay more attention to the significant points which result in a large decrease of the
objective function. When the objective function is differential, some components
in its gradient vector can be used to identify such significant points.

5. The Geometry of the 1-Extremal Spherical Code onS3

Let PN = {x1, . . . , xN } be a spherical code withN points on the unit sphereS3 in
the 3-dimensional space. Define

Di := {x ∈ S3 | ‖x − xi‖ 6 ‖x − xj‖, ∀j ∈ I }
wherei ∈ I = {1, . . . , N}. ThenDi is calledthe Dirichlet(Voronoi) cell of xi .
The set{D1, . . . ,DN} is a partition ofS3. EachDi is a spherical polygon, i.e., its
boundary consists of finitely many pieces of great circle arcs [22, 23]. It is known
that the cell structure of 32 and 37-electrons resembles theC60 andC70 fullerenes,
respectively [22, 23, 40]. If the centers of polygonal faces of a globally optimal
configuration of 32 electrons on the sphereS3 are linked (this process is called as
face–dualoperation [40]), a similar configuration ofC60 molecule will be obtained.
Except forC60, C70 andC50, most fullerenes fromC20 toC70 with even-numbered
carbon atoms have relatively low symmetries [40]. We have found that the cell
structure of 14-electrons onS3 has a similar property as above with respect to 1-
energyω(1, P 3

N) and is close to a globally optimal configuration of 24-electrons
onS3. Furthermore, we have observed an interesting phenomenon: If we pile up a
globally optimal structure of 14-electrons and its face-dual structure onS3, we will
get a structure that is close to a globally optimal configuration of 38-electrons on
S3. We call this process asstructure-pilingoperation.

The energy relationships among the globally optimal configurations ofN =
14,24,38 are presented in the Tables 2, 3 and 4. Mass center is referred as the
intersection of the sphereS3 and a radius passing through the mass center of each
polygonal face in a globally optimal configuration ofN = 14. Dirichlet center
is referred as the point in a Dirichlet cell that has equal distance to every vertex
of polygonal face in a globally optimal configuration ofN = 14. The energies
corresponding to mass centers and Dirichlet centers forN = 24,38 is presented
in Table 2. The structures corresponding to these centers are close to globally
optimal configurations. After these structures are relaxed, we get the globally min-



342 HONG-XUAN HUANG ET AL.

Table 2. The energy from face-dual and structure-piling operations

N Optimal energy Mass center Dirichlet center

14 69.3063632966

24 223.3470740518 224.9053099640 226.0894818638

38 593.0385035665 593.4042805188 593.3853109876

Table 3. The energy after relaxation of approximating configuration

N Optimal energy Mass center Dirichlet center

14 69.3063632966

24 223.3470740518 223.3470740545 223.3470740537

38 593.0385035665 593.0385035665 593.0385035666

imal energies forN = 24,38 (see Table 3). The distribution of globally minimal
energy forN = 38 is presented in Table 4. The energies corresponding to the
sub-configurations forN = 14,24 is slightly higher than their globally minimal
energies.

An open question:Given the number of electronsN , can a globally optimal
configuration forN-electrons on the unit sphereS3 in the 3-dimensional space be
obtained through a series offace-dualandstructure-pilingoperations, i.e., is there
a finite sequence{Ni|i = 1, . . . , k} such that 26 N1 < N2 < · · · < Nk = N and
a globally optimal configuration ofNi electrons onS3 can be obtained from that of
Ni−1 electrons through eitherface-dualoperation orstructure-pilingoperation? If
yes, what is the minimal integerN1 for the givenN?

6. Concluding Remarks

The Spherical Code (SC) problem is considered in this paper using a formulation
based on bilevel optimization. From this formulation, we introduce the concept

Table 4. Distribution of the globally minimal energy (N = 38)

N Optimal Energy Mass Center Dirichlet Center

14 69.3063632966 69.3069040459 69.3069040877

24 223.3470740518 225.2370473819 225.2370506152

38 593.0385035665 593.0385035665 593.0385035666
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of L-balanced spherical code and present a new approach, the Point Balance Al-
gorithm (PBA), for searching for a 1-balanced spherical code. Since an optimal
solution of the SC problem must be one of 1-balanced spherical codes, PBA can
be used easily to search efficiently for an extremal spherical code of the Spherical
Code problem on the unit sphere in then-dimensional space<n. In addition, we
discuss the implementation issues of PBA. Some putative global optimal numerical
results for the Fekete problem in 3, 4 and 5-dimensional spaces are also reported.
Note that PBA can be extended to search for aL-balanced spherical code of the
SC problem or used as a general strategy in solving other optimization problems.
Finally, an open question about the geometry of Fekete points on the unit sphere in
3-dimensional space is posed.
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