# A Point Balance Algorithm for the Spherical Code Problem * 

HONG-XUAN HUANG ${ }^{1}$, PANOS M. PARDALOS ${ }^{2}$ and ZUO-JUN SHEN ${ }^{2}$<br>${ }^{1}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China;<br>${ }^{2}$ Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL 32611, USA (e-mail: pardalos@cao.ise.ufl.edu)

(Accepted 17 November 2000)


#### Abstract

The Spherical Code (SC) problem has many important applications in such fields as physics, molecular biology, signal transmission, chemistry, engineering and mathematics. This paper presents a bilevel optimization formulation of the SC problem. Based on this formulation, the concept of balanced spherical code is introduced and a new approach, the Point Balance Algorithm (PBA), is presented to search for a 1-balanced spherical code. Since an optimal solution of the SC problem (an extremal spherical code) must be a 1-balanced spherical code, PBA can be applied easily to search for an extremal spherical code. In addition, given a certain criterion, PBA can generate efficiently an approximate optimal spherical code on a sphere in the $n$-dimensional space $\mathfrak{R}^{n}$. Some implementation issues of PBA are discussed and putative global optimal solutions of the Fekete problem in 3, 4 and 5-dimensional space are also reported. Finally, an open question about the geometry of Fekete points on the unit sphere in the 3-dimensional space is posed.


Key words: Spherical Code (SC), Extremal Energy, Extremal Spherical Code, Balanced Spherical Code, Point Balance Algorithm, Global Optimization, Bilevel Optimization, Pattern Search Algorithm

## 1. Introduction

A spherical code is a finite collection of points on the $n$-dimensional unit sphere. The Spherical Code (SC) problem is referred to as how to distribute points on the unit sphere according to a certain 'generalized energy'. The SC problem has been the focus of research in various fields such as physics [1], molecular biology [9, 28], signal transmission [39], chemistry [40], engineering and mathematics $[4,23,24,29]$. Some well-known problems, such as the Tammes problem (the best-packing problem), the Fekete problem (the minimal potential energy arrangements), the best-covering problem, the maximal volume arrangements and the $t$-designs problem, can be considered as SC problems with different objectives [5,25]. Given a certain form of the generalized energy, a special spherical code

[^0]can be generated via optimization to satisfy some constraints and performance measures. Hence, the SC problem has a strong connection with optimization.

The Tammes problem, which is defined as how to place $N$ points on a sphere in the $n$-dimensional space so as to maximize the minimal distance (or equivalently the minimal angle) between any two points, is one of the most studied SC problems in the mathematical literature [4]. Without loss of generality, the sphere is normalized to a radius of 1 . Given an integer $N \geqslant 2$, the Tammes problem is equivalent to the following optimization problem:

$$
\begin{equation*}
E_{T}=\max _{\left\|x_{i}\right\|=1,1 \leqslant i \leqslant N} \min _{1 \leqslant j<k \leqslant N}\left\|x_{j}-x_{k}\right\| \tag{1}
\end{equation*}
$$

where $x_{i} \in \Re^{n}$ and the vector norm $\|\cdot\|$ is the Euclidean norm. The Tammes problem can also be stated equivalently as the best-packing problem: how to pack $N$ non-overlapping identical circles (or spherical caps) on the sphere such that the size of the circles is as large as possible. The three-dimensional case of the Tammes problem and the related problem, whether or not the optimal packing is essentially unique, were first raised by the Dutch botanist P.M.L. Tammes in connection with the distribution of pores on pollen grains $[18,28]$.

In this paper, we introduce a formulation of the SC problem based on bilevel optimization. In our discussion, we adopt the following 'generalized energy' [13, 21-23]. Let $S^{n}=\{x \mid\|x\|=1\}$ denote the unit sphere and $x=\left(x^{1}, x^{2}, \ldots, x^{n}\right)^{T}$ denote a point in the $n$-dimensional real space $\mathfrak{R}^{n}$. Let $N \geqslant 2$ be an integer and parameter $s \in \mathfrak{R}$. Let $P_{N}^{n}$ denote a spherical code with $N$ points on $S^{n}$, i.e., a set of unit vectors in $\Re^{n}$ (may require them to be mutually different for a certain value of the parameter $s$ ). The s-energy associated with the spherical code $P_{N}^{n}=$ $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ can be defined by

$$
\omega\left(s, P_{N}^{n}\right)= \begin{cases}\sum_{i<j}\left\|x_{i}-x_{j}\right\|^{-s} & \text { if } s \neq 0  \tag{2}\\ \sum_{i<j} \ln \left(\frac{1}{\left\|x_{i}-x_{j}\right\|}\right) & \text { if } s=0\end{cases}
$$

The s-extremal energy $E_{N}(s)$ for $N$ points on $S^{n}$ is defined by

$$
E_{N}^{n}(s)=\left\{\begin{array}{l}
\min _{P_{N}^{n} \subset S^{n}} \omega\left(s, P_{N}^{n}\right) \text { if } s \geqslant 0  \tag{3}\\
\max _{P_{N}^{n} \subset S^{n}} \omega\left(s, P_{N}^{n}\right) \text { if } s<0
\end{array}\right.
$$

The spherical code $P_{s, N}^{n, *}=\left\{x_{s, 1}^{*}, \ldots, x_{s, N}^{*}\right\}$ is called the $s$-extremal spherical code if it satisfies

$$
\omega\left(s, P_{s, N}^{n, *}\right)=E_{N}^{n}(s)
$$

The points in the 0-extremal spherical code $P_{0, N}^{n, *}$ are called logarithmic extreme points or elliptic Fekete points [33]. Clearly, the elliptic Fekete points maximize
the product of the distances between any two points in $P_{N}^{n}$, i.e.,

$$
\max _{\left\|x_{i}\right\|=1,1 \leqslant i \leqslant N} \prod_{1 \leqslant j<k \leqslant N}\left\|x_{j}-x_{k}\right\|
$$

Given a large integer $N$, there are many saddle points and various symmetries in $P_{N}^{n}$, and it is very difficult to minimize the 0-energy associated with $P_{N}^{n}$ [24]. It is one of the most challenging problems for the next century as proposed by S. Smale even to find a good approximation to the elliptic Fekete points in the 3-dimensional space for any integer $N \geqslant 2$ [26]. Reference [21] provides numerical evidence that the generalized spiral points have the following property:

$$
\omega\left(0, P_{N}^{n}\right)-E_{N}^{n}(0) \leqslant 114 \log N
$$

when the number of points is $N \leqslant 12000$.
The points in the 1-extremal spherical code $P_{1, N}^{n, *}$ are called Fekete points [5]. Let us consider $N$ point charges on a unit conducting sphere, interacting only through their mutual Coulomb forces. What is the configuration of the charges for which the Coulombic energy is minimized? This question was original raised by Thomson for $2 \leqslant N \leqslant 100$ [38], and has since been investigated by many researchers [1, 68, 21, 22]. The Fekete points in the 3-dimensional space represent the locations of $N$ charged particles on the unit sphere that repel each other according to Coulomb's law. Hence, the Fekete problem in the 3-dimensional space is the same as the Thomson problem.

As $s \rightarrow+\infty$, with $N$ fixed, the $s$-energy is increasingly dominated by the term involving the smallest distance. Hence, $\left(\omega\left(s, P_{N}\right)\right)^{1 / s} \rightarrow 1 / \min _{i \neq j}\left\|x_{i}-x_{j}\right\|$ as $s \rightarrow$ $+\infty$. In this sense, the $s$-extremal energy problem leads to the Tammes problem. In the following discussion, $s=+\infty$ is often used to indicate the Tammes problem.

There are many results about the upper, lower bounds and asymptotics for the $s$ extremal energy, such as the bounds of $E_{N}^{n}(s)$ for $0<s<n-1$ and $3 \leqslant n<s+1$ [13, 21, 36, 37]; for $-2<s<0, n=3$ [21, 37]; for $s=0, n=3$ [21, 35]; for $s=+\infty, n=3[12,15,31,32,34]$ and asymptotics of $E_{N}^{n}(s)$ as $N \rightarrow+\infty$ for $n=s+1 \geqslant 3$ [13]; $s=-1, n=3[21,41] ; s=1, n=3[13,21,23] ; s=0, n=$ 3 [21, 35, 41]; $s=+\infty, n=3$ [34]. There are also some results about the lower bounds for the separation of any pair of points in an $s$-extremal spherical code, such as $s=1, n=3[5] ; s \geqslant n-1, n \geqslant 3[13] ; s=0, n=3[22]$ and $-2<s<0, n=$ 3 [27]. For the case where $s \leqslant-2$, it is known that some equilibrium points may coincide [2]. Several conjectures, concerning the asymptotic behavior of $E_{N}^{2}(s)$, have been presented for $s \in(-2,2)$ and $s>2$, which are based on some numerical experiments [13, 21, 23]. In addition, other types of the packing problems with equal circles have been studied. For the problem of finding the maximum diameter of $N$ equal mutually disjoint circles inside a unit square, exact solutions exist for $N=1, \ldots, 10,16,25,36[10,16]$.

Numerical studies on determining the extremal energy $E_{N}^{n}(s)$ and searching for the related extremal spherical code $P_{s, N}^{n, *}$ have been conducted along with the-
oretical work on bounds and asymptotic behaviors of the extremal energy. There are many methods used or proposed to allocate the points on the sphere, such as constrained global optimization based on Glauber spin flip probability and Metropolis algorithm [1], simulated annealing [6], Monte Carlo simulation [8], the gradient method and quasi-Newton method [22]. Many numerical results for the sphere in the 3-dimensional space are provided, which include more extensive and accurate putative global solutions for $s=-1,0,1[1,6-8,11,22]$. Some global optimization methods for the SC problem and results about the spherical code of the Tammes problem in 4 and 5 dimension can be found in [18].

In this paper, we present a new formulation for the SC problem based on bilevel optimization and introduce the concept of the balanced spherical code and a new strategy for distributing points on the $n$-dimensional unit sphere. Our strategy, the point balance algorithm ( PBA ), is based on the simple idea that every point has the same significance at the beginning of distribution.

The paper is organized as follows: In Section 2, a characterization of the $s$ extremal spherical codes is presented. The concept of L-balanced spherical code is introduced at the end of Section 2. In Section 3, the point balance algorithm, which is based on the necessary condition for $s$-extremal spherical code, is presented and its convergence property is established. In Section 4, implementation issues are discussed and numerical results for the Fekete problem in 3, 4 and 5-dimensional space are reported.

## 2. A Characterization of the $S$-Extremal Spherical Code

A $s$-extremal spherical code for $N(N \geqslant 2)$ points is a globally optimal solution of the following constrained minimization problem:

$$
\begin{array}{ll}
\min & f_{s}\left(P_{N}\right) \triangleq f_{s}\left(x_{1}, x_{2}, \ldots, x_{N}\right) \\
\text { s.t. } & x_{i} \in S^{n}, \forall i=1, \ldots, N \tag{5}
\end{array}
$$

where

$$
f_{s}\left(P_{N}\right)= \begin{cases}\omega\left(s, P_{N}\right) & \text { if } s \geqslant 0 \\ -\omega\left(s, P_{N}\right) & \text { if } s<0\end{cases}
$$

For convenience, in the following discussion, we define $f_{s}(\{x\})=0$ for any $x \in S^{n}$. If we decompose the set $I=\{1,2, \ldots, N\}$ into two disjoint subsets $I^{+}$and $I^{-}$, and denote the sub-spherical codes $\left\{x_{j} \mid x_{j} \in P_{N}, j \in I^{ \pm}\right\}$of $P_{N}$ as $P_{N}\left(I^{ \pm}\right)$, then we can decompose the objective function $f_{s}\left(P_{N}\right)$ into three parts

$$
f_{s}\left(P_{N}\right)=f_{s}\left(P_{N}\left(I^{+}\right)\right)+f_{s}\left(P_{N}\left(I^{-}\right)\right)+f_{s}\left(P_{N}\left(I^{+}\right), P_{N}\left(I^{-}\right)\right)
$$

where

$$
f_{s}\left(P_{N}\left(I^{ \pm}\right)\right)=\sum_{i<j \in I^{ \pm}} f_{s}\left(\left\{x_{i}, x_{j}\right\}\right)
$$

$$
f_{s}\left(P_{N}\left(I^{+}\right), P_{N}\left(I^{-}\right)\right)=\sum_{i \in I^{+}, j \in I^{-}} f_{s}\left(\left\{x_{i}, x_{j}\right\}\right)
$$

Therefore, the global optimization problem (4)~(5) can be transformed into the following equivalent one, which is a bilevel optimization problem [17, 19]:

$$
\begin{array}{ll}
\min & \left\{f_{s}\left(P_{N}\left(I^{-}\right)\right)+\bar{f}_{s}\left(P_{N}\left(I^{-}\right)\right)\right\} \\
\text {s.t. } & x_{i} \in S^{n}, \forall i \in I^{-} \tag{7}
\end{array}
$$

where $\bar{f}_{s}\left(P_{N}\left(I^{-}\right)\right)$is the global optimal value of the sub-problem:

$$
\begin{array}{ll}
\min & \left\{f_{s}\left(P_{N}\left(I^{+}\right)\right)+f_{s}\left(P_{N}\left(I^{+}\right), P_{N}\left(I^{-}\right)\right)\right\} \\
\text {s.t. } & x_{j} \in S^{n}, \forall j \in I^{+} \tag{9}
\end{array}
$$

The Tammes problem (i.e., $s=+\infty$ ) has a similar equivalent form of bilevel optimization, but the function $f_{\infty}\left(\left\{x_{i}, x_{j}\right\}\right)$ should be defined by $1 /\left\|x_{i}-x_{j}\right\|$ and $1 / 0$ should be regarded as $\infty$. The arithmetic operation $\sum$ or + should be replaced by the operation max.

Most bilevel optimization problems are NP-hard from the complexity point of view [17, 19]. In general, computing locally optimal solutions is not easier than finding globally optimal solutions. It has been shown that the problem of checking local optimality for a feasible point and the problem of checking whether a local minimum is strict, are NP-hard [20]. Whether the bilevel optimization (6)~(9) is NP-hard or not, is still an open problem.

For the bilevel global optimization problem (6)~(9), $P_{N}\left(I^{-}\right)$and $P_{N}\left(I^{+}\right)$are referred to as the reference code and the active code, respectively. Sets $I^{-}$and $I^{+}$are called the reference index set and the active index set, respectively. The following characterization can be obtained for the $s$-extremal spherical code $P_{s, N}^{n, *}$ (denoted by $P_{s, N}^{*}$ below).
THEOREM 2.1. A spherical code $P_{N}$ is a globally optimal solution of the problem (4) $\sim(5)$, if and only if, given any $I^{-} \subset I=\{1, \ldots, N\}$ as a reference index set, and the active index set $I^{+}=I \backslash I^{-}$, the sub-spherical code $P_{N}\left(I^{+}\right)$is a globally optimal solution of the problem (8)~(9).

Proof. The necessity holds obviously. We only prove the sufficiency.
For any spherical code $P_{N} \subset S^{n}$ of $N$ points which satisfies the hypothesis, define a function associated with it on the set $G=\left\{P_{s, N}^{*} \mid P_{s, N}^{*}\right.$ is the solution of problem (4)~(5) \} by

$$
g\left(P_{N}, P_{s, N}^{*}\right)=\sum_{i \in I} \delta\left(x_{i}-x_{s, i}^{*}\right)
$$

where $P_{s, N}^{*} \in G$ and the real-valued function $\delta(x)$ satisfies the condition that $\delta(0)=1$ and $\delta(x)=0$ if $x \neq 0$. Let $g_{M}=\sup _{P_{s, N}^{*} \in G} g\left(P_{N}, P_{s, N}^{*}\right)$. Obviously, $1 \leqslant g_{M} \leqslant N$. In particular, $g_{M}=N$ if and only if $P_{N} \in G$. Next, we prove that $g_{M}=N$.

Since $g_{M}$ is a natural number, there exists a $P_{s, N}^{*} \in G$ such that $g_{M}=g\left(P_{N}, P_{s, N}^{*}\right)$ by definition of the supremum. Let $I^{-}=\left\{i \mid \delta\left(x_{i}-x_{s, i}^{*}\right)=1\right\}$. It is clear that $f_{s}\left(P_{N}\left(I^{-}\right)\right)=f_{s}\left(P_{s, N}^{*}\left(I^{-}\right)\right)$. If the number of elements in $I^{-}$equals to $N$, then we get $g_{M}=N$; otherwise, let $I^{+}=I \backslash I^{-}$be active index set. We now consider the problem $(8) \sim(9)$ corresponding to the reference index set $I^{-}$.

According to the hypothesis that $P_{N}\left(I^{+}\right)$is a global solution of $(8) \sim(9)$, and $P_{s, N}^{*} \in G$, we obtain

$$
\begin{aligned}
& f_{s}\left(P_{N}\left(I^{+}\right)\right)+f_{s}\left(P_{N}\left(I^{+}\right), P_{N}\left(I^{-}\right)\right) \leqslant f_{s}\left(P_{s, N}^{*}\left(I^{+}\right)\right) \\
& \quad+f_{s}\left(P_{s, N}^{*}\left(I^{+}\right), P_{s, N}^{*}\left(I^{-}\right)=E_{N}(s)-f_{s}\left(P_{s, N}^{*}\left(I^{-}\right)\right)\right)
\end{aligned}
$$

Thus, $P_{N}$ is a solution of (4)~(5), i.e., $P_{N} \in G$. Therefore $g_{M}=g\left(P_{N}, P_{N}\right)=N$. This indicates that the set $G$ contains all spherical codes such as $P_{N}$ satisfying the hypothesis.

DEFINITION 2.1. Given an integer $L \in[1, N)$, a spherical code $P_{N} \subset S^{n}$ is called the L-balanced spherical code if, for any subset $U \subset I=\{1, \ldots, N\}$ with the size $L, P_{N}(U)$ is a globally optimal solution of the problem (8)~(9) corresponding to $U^{c}=I \backslash U$ as the reference index set. In particular, a spherical code $P_{N} \subset S^{n}$ is called the 1-balanced spherical code if, $\forall i \in I, x_{i} \in P_{N}$ is a globally optimal solution of the problem (8)~(9) corresponding to $I_{i}=I \backslash\{i\}$ as the reference index set.

COROLLARY 2.1. If a sphere code $P_{N}$ is a globally optimal solution of the problem (4)~(5), then $P_{N}$ is a L-balanced spherical code for any integer $L \in$ [1, N).

## 3. A Point Balance Algorithm and its Convergence

Based on Corollary 2.1, a point balance algorithm (PBA) is presented to search for a 1-balanced spherical code in order to solve the SC problem. A detailed description of this algorithm is first presented, followed by the proof of convergence of the point balance algorithm. Some remarks about PBA are given at the end of this section. Note that PBA can be extended to search for a $L$-balanced spherical code.

ALGORITHM 1. The Point Balance Algorithm (PBA)
Step 1: Set the error tolerance $\varepsilon>0$ and the parameters $N, n, s$. Begin with a randomly (or otherwise) chosen initial spherical code on the unit sphere $S^{n}$, denoted by $P_{N}^{(0)}$. Set $k=0$ and the strategy index $S I_{k}=1$.
Step 2: At the $k$ th iteration, choose the strategy for modifying the iterate $P_{N}^{(k)}$. The exploratory spherical code $\hat{P}_{N}^{(k)}=\left\{\hat{x}_{1}^{(k)}, \ldots, \hat{x}_{N}^{(k)}\right\}$ is set by one of the following strategies. If $S I_{k}=1$, then go to Step 3 ; otherwise, go to Step 4.

Step 3: Strategy 1:
For every $x_{i}^{(k)} \in P_{N}^{(k)}$, compute a point $\hat{x}_{i}^{(k)} \in S^{n}$ such that

$$
\begin{equation*}
f_{s}\left(\left\{\hat{x}_{i}^{(k)}\right\}, P_{N}^{(k)}\left(I_{i}\right)\right)=\min _{y \in S^{n}} f_{s}\left(\{y\}, P_{N}^{(k)}\left(I_{i}\right)\right) \tag{10}
\end{equation*}
$$

Go to Step 5.

## Step 4: Strategy 2:

For $i=1, \ldots, N$, let $I_{i}^{-}=\{j \mid j<i\}, I_{i}^{+}=\{j \mid j>i\}$ (may be an empty set) and compute a point $\hat{x}_{i}^{(k)} \in S^{n}$ such that

$$
\begin{aligned}
& f_{s}\left(\left\{\hat{x}_{i}^{(k)}\right\}, \hat{P}_{N}^{(k)}\left(I_{i}^{-}\right) \cup P_{N}^{(k)}\left(I_{i}^{+}\right)\right) \\
& \quad=\min _{y \in S^{n}} f_{s}\left(\{y\}, \hat{P}_{N}^{(k)}\left(I_{i}^{-}\right) \cup P_{N}^{(k)}\left(I_{i}^{+}\right)\right)
\end{aligned}
$$

Go to Step 5.
Step 5: If $f_{s}\left(\hat{P}_{N}^{(k)}\right)<f_{s}\left(P_{N}^{(k)}\right)$, find the value $\lambda^{*}$ that minimizes the function $f_{s}\left(g\left(\theta_{N}^{(k)}+\lambda\left(\hat{\theta}_{N}^{(k)}-\theta_{N}^{(k)}\right)\right)\right)$, where $\theta_{N}^{(k)}$ and $\hat{\theta}_{N}^{(k)}$ are the hyperspherical coordinates of the spherical codes $P_{N}^{(k)}$ and $\hat{P}_{N}^{(k)}$, respectively. $g(\bullet)$ is the transformation from the hyperspherical coordinates of some points into their Cartesian coordinates (see (13)~(14) of Section 4 later). Let $P_{N}^{(k+1)}$ be the spherical code $g\left(\theta_{N}^{(k)}+\lambda^{*}\left(\hat{\theta}_{N}^{(k)}-\theta_{N}^{(k)}\right)\right)$ and set the strategy index $S I_{k+1}=1$. Otherwise, let

$$
i^{*}=\operatorname{argmin}\left\{f_{s}\left(\left\{\hat{x}_{i}^{(k)}\right\} \cup P_{N}^{(k)}\left(I_{i}\right)\right) \mid i \in I\right\}
$$

Let $P_{N}^{(k+1)}$ be the spherical code $\left\{\hat{x}_{i^{*}}^{(k)}\right\} \cup P_{N}^{(k)}\left(I_{i^{*}}\right)$ and set the strategy index $S I_{k+1}=2$.
Step 6: If $f_{s}\left(P_{N}^{(k+1)}\right)>f_{s}\left(P_{N}^{(k)}\right)-\varepsilon$, terminate PBA and output the spherical code $P_{N}^{(k+1)}$ together with its objective function value; otherwise, set $k \leftarrow k+1$ and go to Step 2.

We give an example to illustrate how PBA works with the SC problem. Let us consider an instance of the Fekete problem:

## EXAMPLE 1.

$$
\begin{array}{ll}
\min & f_{1}\left(P_{3}\right)=f_{1}\left(x_{1}, x_{2}, x_{3}\right) \\
\text { s.t. } & x_{i} \in S^{2}=\left\{x \mid x^{T} x=1, x \in \mathfrak{R}^{2}\right\}, i=1,2,3
\end{array}
$$

Variables $x_{1}, x_{2}, x_{3}$ are coordinates of three points $A, B, C$, respectively. Suppose that code $P_{3}^{(k)}=\left\{x_{1}^{(k)}, x_{2}^{(k)}, x_{3}^{(k)}\right\}$ is obtained at a certain iteration, where

$$
x_{1}^{(k)}=(-0.8,-0.6)^{T}, x_{2}^{(k)}=(0.8,-0.6)^{T}, x_{3}^{(k)}=(-0.8,0.6)^{T}
$$

It corresponds to an objective function value $f_{1}\left(P_{N}^{(k)}\right)=1.95833$.

When Strategy 1 is used to modify $P_{3}^{(k)}$, we have

$$
\hat{x}_{1}^{(k)}=(-0.6,-0.8)^{T}, \hat{x}_{2}^{(k)}=(1,0)^{T}, \hat{x}_{3}^{(k)}=(0,1)^{T}
$$

by minimizing $f_{1}\left(P_{3}\right)$ with respect to $x_{i}$ while $x_{j}=x_{j}^{(k)}(j \neq i)$ are fixed, for $i=1,2,3$. These vectors correspond to an exploratory spherical code $\hat{P}_{3}^{(k)}=$ $\left\{\hat{x}_{1}^{(k)}, \hat{x}_{2}^{(k)}, \hat{x}_{3}^{(k)}\right\}$ with objective function value $f_{1}\left(\hat{P}_{3}^{(k)}\right)=1.79317$. The points $A_{1}, B_{1}, C_{1}$, which correspond to $\hat{P}_{3}^{(k)}$, are shown in Figure 1.

When Strategy 2 is used to modify $P_{3}^{(k)}$, we have

$$
\begin{aligned}
& \bar{x}_{1}^{(k)}=(-0.6,-0.8)^{T}, \bar{x}_{2}^{(k)}=(0.98995,0.14142)^{T} \\
& \bar{x}_{3}^{(k)}=(-0.50949,0.86047)^{T}
\end{aligned}
$$

by minimizing $f_{1}\left(P_{3}\right)$ with respect to $x_{i}$ while $x_{j}=\bar{x}_{j}^{(k)}(j<i)$ and $x_{j}=x_{j}^{(k)}$ ( $j>i$ ) are fixed, for $i=1,2,3$. These vectors correspond to another exploratory spherical code $\bar{P}_{3}^{(k)}=\left\{\bar{x}_{1}^{(k)}, \bar{x}_{2}^{(k)}, \bar{x}_{3}^{(k)}\right\}$ with objective function value $f_{1}\left(\bar{P}_{3}^{(k)}\right)=$ 1.74389. The points $A_{2}, B_{2}, C_{2}$, which correspond to $\bar{P}_{3}^{(k)}$, are shown in Figure 2.

Based on any of these exploratory codes and their equivalent forms in polar coordinates, line search can be used to search for a better code.


Figure 1. Example for Strategy 1.


Figure 2. Example for Strategy 2.

From the point balance algorithm, we can see that $\left\{f_{s}\left(P_{N}^{(k)}\right)\right\}$ is a monotonic decreasing sequence as $k$ becomes larger and is bounded below. Therefore, PBA will terminate after certain iterations. We give the following conclusion about the convergence of the point balance algorithm as the error tolerance $\varepsilon$ tends to zero.

THEOREM 3.1. Let $C_{N}$ be the set including all feasible spherical codes with $N$ points on $S^{n}$ (some feasible codes may have some identical points for certain value of the parameter $s$ ). Let $f_{s}$ be a real-valued function defined by (4) on $C_{N}$. Given a code $P_{N}^{(0)} \in C_{N}, f_{s}\left(P_{N}^{(0)}\right)=\alpha$, define a level set

$$
L\left(f_{s}, \alpha\right)=\left\{P_{N} \mid P_{N} \in C_{N}, f_{s}\left(P_{N}\right) \leqslant \alpha\right\}
$$

Assume that $f_{s}$ is continuous on $L\left(f_{s}, \alpha\right)$. Let $\left\{P_{N}^{(k)}\right\}$ be the sequence of codes generated by the point balance algorithm. For $k=0,1,2, \cdots$, if the following condition holds:

$$
\begin{equation*}
f_{s}\left(P_{N}^{(k+1)}\right) \leqslant \min _{i \in I} f_{s}\left(\left\{\hat{x}_{i}^{(k)}\right\} \cup P_{N}^{(k)}\left(I_{i}\right)\right) \tag{11}
\end{equation*}
$$

where $\hat{x}_{i}^{(k)}$ is defined by (10), $I=\{1, \ldots, N\}$ and $I_{i}=I \backslash\{i\}$, then every cluster point $P_{N}^{*}$ of $\left\{P_{N}^{(k)}\right\}$ is a 1-balanced spherical code. In particular, for $s \in(-\infty,+\infty]$, if $f_{s}$ is continuously differential at $P_{N}^{*}$, then $\nabla f_{s}\left(P_{N}^{*}\right)=0$, where $\nabla f_{s}$ is calculated with respect to the spherical coordinates of points.

Proof. If $\left\{P_{N}^{(k)} \mid k=0,1, \cdots\right\}$ is a finite set, then PBA terminates at $P_{N}^{(K)}$, where $K$ is the number of iterates. Clearly, $P_{N}^{(K)}$ is a 1-balanced spherical code.

Without loss of generality, suppose that $\left\{P_{N}^{(k)} \mid k=0,1, \cdots\right\}$ is an infinite subset of $L\left(f_{s}, \alpha\right)$. Because $\left\{f_{s}\left(P_{N}^{(k)}\right)\right\}$ is a monotonic decreasing sequence and is bounded below, it has a limit. In addition, $S^{n}$ is a compact set and it follows from the Bolzano-Weierstrass theorem that there exists a subsequence $\left\{P_{N}^{\left(k_{m}\right)}\right\}$ of $\left\{P_{N}^{(k)}\right\}$ that converges to $P_{N}^{*}$.

If $P_{N}^{*}$ is not a 1-balanced spherical code, then there exists a natural number $p$ such that

$$
f_{s}\left(\left\{\hat{x}_{p}^{*}\right\}, P_{N}^{*}\left(I_{p}\right)\right)=\min _{y \in S^{n}} f_{s}\left(\{y\}, P_{N}^{*}\left(I_{p}\right)\right)<f_{s}\left(\left\{x_{p}^{*}\right\}, P_{N}^{*}\left(I_{p}\right)\right)
$$

Let $\hat{P}_{N, p}^{*}$ be $\left\{\hat{x}_{p}^{*}\right\} \cup P_{N}^{*}\left(I_{p}\right)$; then $\hat{P}_{N, p}^{*}$ is an interior spherical code of $L\left(f_{s}, \alpha\right)$ and $\epsilon=f_{s}\left(P_{N}^{*}\right)-f_{s}\left(\hat{P}_{N, p}^{*}\right)>0$.

Based on continuity of $f_{s}$ on $L\left(f_{s}, \alpha\right)$ and $\lim _{m \rightarrow+\infty} P_{N}^{\left(k_{m}\right)}=P_{N}^{*}$, we get

$$
\begin{aligned}
& \lim _{m \rightarrow+\infty} f_{s}\left(P_{N}^{\left(k_{m}\right)}\right)=f_{s}\left(P_{N}^{*}\right) \\
& \lim _{m \rightarrow+\infty} f_{s}\left(\left\{\hat{x}_{p}^{*}\right\} \cup P_{N}^{\left(k_{m}\right)}\left(I_{p}\right)\right)=f_{s}\left(\left\{\hat{x}_{p}^{*}\right\} \cup P_{N}^{*}\left(I_{p}\right)\right)
\end{aligned}
$$

For sufficiently large $k_{m}$, the following inequality holds

$$
\begin{aligned}
& f_{s}\left(\left\{\hat{x}_{p}^{*}\right\} \cup P_{N}^{\left(k_{m}\right)}\left(I_{p}\right)\right) \\
& \quad \leqslant f_{s}\left(\left\{\hat{x}_{p}^{*}\right\} \cup P_{N}^{*}\left(I_{p}\right)\right)+\epsilon / 2 \\
& \quad=f_{s}\left(P_{N}^{*}\right)-\epsilon / 2
\end{aligned}
$$

Since $\hat{x}_{p}^{\left(k_{m}\right)}$ is a globally optimal solution of $\min _{y \in S^{n}} f_{s}\left(\{y\} \cup P_{N}^{\left(k_{m}\right)}\left(I_{p}\right)\right)$ and the hypothesis $f_{s}\left(P_{N}^{\left(k_{m}+1\right)}\right) \leqslant f_{s}\left(\left\{\hat{x}_{p}^{\left(k_{m}\right)}\right\} \cup P_{N}^{\left(k_{m}\right)}\left(I_{p}\right)\right)$ holds, we have

$$
f_{s}\left(P_{N}^{*}\right)<f_{s}\left(P_{N}^{\left(k_{m}+1\right)}\right) \leqslant f_{s}\left(\left\{\hat{x}_{p}^{\left(k_{m}\right)}\right\} \cup P_{N}^{\left(k_{m}\right)}\left(I_{p}\right)\right) \leqslant f_{s}\left(P_{N}^{*}\right)-\epsilon / 2
$$

which is a contradiction from the monotonicity of the sequence $\left\{f_{s}\left(P_{N}^{(k)}\right)\right\}$. Hence, $P_{N}^{*}$ must be a 1-balanced spherical code. Based on the necessary condition of a local minimal point and the spherical coordinates of points, $\nabla f_{s}\left(P_{N}^{*}\right)=0$ holds for $s \in(-\infty,+\infty]$ if $f_{s}$ is continuously differential at $P_{N}^{*}$.

REMARK. The conclusions in Theorem 3.1 still hold if the condition (11) is replaced by the following one: for $k=0,1, \cdots$, if

$$
I^{(k)}=\left\{i \mid f_{s}\left(\left\{\hat{x}_{i}^{(k)}\right\}, P_{N}^{(k)}\left(I_{i}\right)\right)<f_{s}\left(\left\{x_{i}^{(k)}\right\}, P_{N}^{(k)}\left(I_{i}\right)\right)\right\}
$$

is not an empty set, there exists a natural number $p \in I^{(k)}$ such that

$$
\begin{equation*}
f_{s}\left(P_{N}^{(k+1)}\right) \leqslant f_{s}\left(\left\{\hat{x}_{p}^{(k)}\right\} \cup P_{N}^{(k)}\left(I_{p}\right)\right), \tag{12}
\end{equation*}
$$

where $\hat{x}_{i}^{(k)}$ is defined by (10).
From Theorem 3.1 about convergence of PBA, the algorithm seems to solve $N$ global optimization problems with respect to every $i \in I$. In order to find a 1-balanced spherical code, we do not need to get a globally minimal solution for every point due to the following reason: 'Global' and 'local' are relative concepts in the spherical code problem. When the separation of any pair of points in the $s$-extremal spherical code (such as $s>-2$ ) exists, the effect of one large change at one point is approximately equivalent to that of many small changes at multiple points simultaneously. Hence, it is sufficient to conduct a series of local optimizations for each point in order to find or approximate a 1-balanced spherical code for parameter $s>-2$. That is, we can use the following operation in place of the global optimization in Step 3 and 4 of PBA: Determine a closed neighborhood $U_{i}^{(k)}$ of $x_{i}$ for every $i \in I$ at the $k$ th iteration and find a local minimal solution in $U_{i}^{(k)}$ with respect to $i$ th point of $\hat{P}_{N}^{(k)}$. For a certain value of the parameter $s$, it may be required that the neighborhood $U_{i}^{(k)}$ of $x_{i}$ does not include other points. We also note that global optimization for a single point (not all points) is needed in order to assure that PBA is robust for the parameter $s \leqslant-2$.

## 4. Some Implementation Issues About PBA

Note that PBA can be used to distribute points on any sphere in a general $n$ dimensional space and determine the $s$-extremal energy. In the following, PBA is used to distribute points on the unit sphere in 3, 4 and 5-dimensional spaces and to determine the 1-extremal energy. Numerical experiments were conducted with an AMD K6-2/300 CPU processor, 64M memory and MATLAB 5.3.

Numerical results are presented in Table 1. Table 1 includes the number of points which range from 2 to 50 , the dimension of space and the corresponding 1 -extremal energy. In the 3 -dimensional case, we have actually obtained the 1extremal energy and the 1 -extremal spherical codes (Fekete points) corresponding to the number of points ranging from 51 to 100 . Our results for 51 to 100 points in the 3-dimensional space is similar to those reported in [11, 22], and thus are not listed here. It is also found that the number of equilibrium meta-stable states increases fast when $N$ is large and all these meta-stable states have very close energies between 0.001 and 0.12 . Furthermore, we have found that the differences
of energies among these meta-stable states can not be very close (such as not less than $1.0 \mathrm{e}-6$ ). If we can find a spherical code whose corresponding energy is close to the extremal energy at this error level, then this spherical code is very close to the extremal spherical code and can be improved to the extremal one by a powerful high precise local optimization algorithm. Given the number of points and the dimension of the space, PBA outputs the 1-extremal energy and its corresponding extremal spherical code. We let PBA be executed 20 times independently for every case and the initial code is chosen randomly before each execution. Computational times reported in Table 1 indicate the time it takes in the execution of finding the 1 -extremal energy.

In the following, we discuss some implementation issues of the PBA algorithm. The constrained minimization problem (4)~(5) can be transformed into the following unconstrained minimization problem:

$$
\min f_{s}\left(P_{N}\right) \triangleq f_{s}\left(g\left(\theta_{1}\right), \ldots, g\left(\theta_{N}\right)\right)
$$

where $x_{i}=g\left(\theta_{i}\right)=\left(G_{1}\left(\theta_{i}\right), \ldots, G_{n-1}\left(\theta_{i}\right), \hat{G}_{n-1}\left(\theta_{i}\right)\right)^{T}$ and $\theta_{i}$ is the hyperspherical coordinate of the point $x_{i}, i \in I=\{1, \ldots, N\}$. The transformation from the hyperspherical coordinate $\theta_{i}$ of a point into its Cartesian coordinate $x_{i}$ is defined in [18] by

$$
\begin{align*}
& x_{i}^{k}=G_{k}\left(\theta_{i}\right) \triangleq \cos \left(\theta_{i}^{k}\right) \prod_{t=1}^{k-1} \sin \left(\theta_{i}^{t}\right),  \tag{13}\\
& x_{i}^{n}=\hat{G}_{n-1}\left(\theta_{i}\right) \triangleq \prod_{t=1}^{n-1} \sin \left(\theta_{i}^{t}\right), \tag{14}
\end{align*}
$$

where $k=1, \ldots, n-1$ and $i \in I$. It is easy to see that $x_{i} \in S^{n}, \forall i \in I$. By the periodical property of the trigonometric function, $\theta_{i}^{n-1} \in[0,2 \pi]$ and $\theta_{i}^{t} \in[0, \pi]$, for $t=1, \ldots, n-2$. Let us denote the domain of $\theta$ by $\Theta$. This requirement reduces the search space, but it does not further restrict the problem.

The following strategy is also used in the implementation of PBA: The effect of one large change at one point is approximately equivalent to that of many small changes at multiple points simultaneously. We determine a closed neighborhood $U_{i}^{(k)}=\left\{\theta| | \theta^{n-1}-\theta_{i}^{n-1}\left|\leqslant 0.4,\left|\theta^{t}-\theta_{i}^{t}\right| \leqslant 0.2, t=1, \ldots, n-2\right\}\right.$ for each $x_{i}$ in the hyperspherical coordinate space at the $k$ th iteration. Certainly, the size of $U_{i}^{(k)}$ can be adjusted arbitrarily. Then we find a minimal solution of the function $f_{s}\left(\{g(\theta)\}, P_{N}\left(I_{i}\right)\right)$ with respect to $\theta \in U_{i}^{(k)}$ by the pattern search algorithm [14, 30] and transform the solution into the domain $\Theta$. Because the relative positions of points (i.e., structure of points) in the spherical code is more important than a single point's global minimal position or local minimal position, we can use a certain inexact algorithm to solve for the single point optimization problem in Step 3 and Step 4 of PBA, or adjust the size of neighborhood for every point, or allow the objective function value to increase a little in Step 5 of PBA.

Table 1. The Energy $E_{N}(1)$ and Running Time (seconds) of PBA

| N | Dimension of Space |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 4 |  | 5 |  |
|  | Energy | Time | Energy | Time | Energy | Time |
| 2 | 0.5000000000 | 0.54 | 0.5000000000 | 0.86 | 0.5000000000 | 1.08 |
| 3 | 1.7320508076 | 1.22 | 1.7320508076 | 1.61 | 1.7320508076 | 3.04 |
| 4 | 3.6742346142 | 2.56 | 3.6742346142 | 2.58 | 3.6742346142 | 2.68 |
| 5 | 6.4746914947 | 2.66 | 6.3245553203 | 4.45 | 6.3245553204 | 3.22 |
| 6 | 9.9852813742 | 3.34 | 9.8280626463 | 5.26 | 9.6824583656 | 9.13 |
| 7 | 14.4529774142 | 5.17 | 14.0457593066 | 8.36 | 13.8915667961 | 11.24 |
| 8 | 19.6752878612 | 5.12 | 18.9705627485 | 7.79 | 18.8133440201 | 10.71 |
| 9 | 25.7599865313 | 7.95 | 24.8524723508 | 13.26 | 24.4452542432 | 18.88 |
| 10 | 32.7169494602 | 9.80 | 31.4414887344 | 17.54 | 30.7842712475 | 16.02 |
| 11 | 40.5964505082 | 11.50 | 38.8506628312 | 14.49 | 38.0803944122 | 23.31 |
| 12 | 49.1652530576 | 9.27 | 46.9772958043 | 13.68 | 46.0819991823 | 46.13 |
| 13 | 58.8532306117 | 12.87 | 56.0101273884 | 25.40 | 54.8414687111 | 59.68 |
| 14 | 69.3063632966 | 15.16 | 65.7725600449 | 18.07 | 64.3867543861 | 53.33 |
| 15 | 80.6702441143 | 24.00 | 76.3195838169 | 32.88 | 74.6446557516 | 59.16 |
| 16 | 92.9116553025 | 23.15 | 87.7825427621 | 41.61 | 85.6062329787 | 43.10 |
| 17 | 106.0504048286 | 26.35 | 100.0452496480 | 49.24 | 97.5413901586 | 86.65 |
| 18 | 120.0844674475 | 28.80 | 113.0728017807 | 70.90 | 110.2043928673 | 107.70 |
| 19 | 135.0894675567 | 33.11 | 126.9020228810 | 52.17 | 123.5951332472 | 96.74 |
| 20 | 150.8815683338 | 26.11 | 141.4633972296 | 68.04 | 137.6909394839 | 131.45 |
| 21 | 167.6416223993 | 45.34 | 156.9553620096 | 57.36 | 152.5634382327 | 106.42 |
| 22 | 185.2875361493 | 59.31 | 173.2994494671 | 98.21 | 168.4101533365 | 164.74 |
| 23 | 203.9301906629 | 62.27 | 190.4671590599 | 75.62 | 185.0042835723 | 149.92 |
| 24 | 223.3470740518 | 69.57 | 208.3373140876 | 94.75 | 202.3286626413 | 290.58 |
| 25 | 243.8127602988 | 68.77 | 227.1149670164 | 135.11 | 220.4056756676 | 180.71 |
| 26 | 265.1333263174 | 82.64 | 246.7116655734 | 150.11 | 239.2681370939 | 207.86 |
| 27 | 287.3026150330 | 102.27 | 267.1093955520 | 145.11 | 258.9793171561 | 281.58 |
| 28 | 310.4915423582 | 91.77 | 288.3353711326 | 175.51 | 279.4070088120 | 251.24 |
| 29 | 334.6344399204 | 136.52 | 310.3764656412 | 175.43 | 300.5862888064 | 295.40 |
| 30 | 359.6039459038 | 118.43 | 333.2591076218 | 234.00 | 322.5010963461 | 251.24 |
| 31 | 385.5308380634 | 115.93 | 356.9706923760 | 206.26 | 345.3071291545 | 395.42 |
| 32 | 412.2612746506 | 122.77 | 381.4576933643 | 158.90 | 368.7988169660 | 332.97 |
| 33 | 440.2040574479 | 127.59 | 406.7037565663 | 214.93 | 393.2984985854 | 480.10 |
| 34 | 468.9048532816 | 143.01 | 432.8171270786 | 240.99 | 418.5194699262 | 434.31 |
| 35 | 498.5698724907 | 150.86 | 459.9044158715 | 244.80 | 444.5351117287 | 526.48 |
| 36 | 529.1224083754 | 172.61 | 487.7461934186 | 298.24 | 471.2611700625 | 544.51 |
| 37 | 560.6188877310 | 189.72 | 516.3511306143 | 239.25 | 498.8414511878 | 492.23 |
| 38 | 593.0385035665 | 213.91 | 545.8403071907 | 317.29 | 527.1578481603 | 506.69 |
| 39 | 626.3890090168 | 228.73 | 576.1753571984 | 391.86 | 556.2545481522 | 675.04 |
| 40 | 660.6752788347 | 211.38 | 607.3059497544 | 358.13 | 586.0597565361 | 476.59 |
| 41 | 695.9167443419 | 218.56 | 639.2175331832 | 424.79 | 616.7855371793 | 484.78 |
| 42 | 732.0781075437 | 227.24 | 671.9323207345 | 524.31 | 648.2674257264 | 696.94 |
| 43 | 769.1908464594 | 285.10 | 705.4796399257 | 615.25 | 680.5772238874 | 802.41 |
| 44 | 807.1742630847 | 280.88 | 739.9028485970 | 446.70 | 713.6201171224 | 897.21 |
| 45 | 846.1884010611 | 325.48 | 775.1956954657 | 457.13 | 747.4599144210 | 785.83 |
| 46 | 886.1671136394 | 273.82 | 811.3883244928 | 508.79 | 782.1046050131 | 1049.13 |
| 47 | 927.0592706797 | 395.41 | 848.3771636310 | 615.39 | 817.5515554672 | 888.92 |
| 48 | 968.7134553438 | 378.05 | 886.1431085825 | 631.18 | 853.7564440154 | 1371.80 |
| 49 | 1011.5571826536 | 403.96 | 924.7333926864 | 802.29 | 890.7390584591 | 1000.52 |
| 50 | 1055.1823147264 | 330.06 | 964.0848033638 | 562.03 | 928.5425407307 | 1107.71 |

In order to accelerate the process of searching for the extremal spherical code, the algorithm calls the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm at the final stage (the amount of decrease in the objective function is less than 0.1 ) and uses a simple quadratic/cubic interpolation algorithm for the line search [3]. This kind of accelerating strategy can be implemented by calling the subroutine fminu.m in MATLAB 5.3.

The proof of Theorem 3.1 shows that a decrease of the objective function corresponding to a certain point in a spherical code is essential in searching for a 1 -balanced spherical code. Therefore, in the point balance algorithm, we should pay more attention to the significant points which result in a large decrease of the objective function. When the objective function is differential, some components in its gradient vector can be used to identify such significant points.

## 5. The Geometry of the 1-Extremal Spherical Code on $S^{\mathbf{3}}$

Let $P_{N}=\left\{x_{1}, \ldots, x_{N}\right\}$ be a spherical code with $N$ points on the unit sphere $S^{3}$ in the 3-dimensional space. Define

$$
D_{i}:=\left\{x \in S^{3} \mid\left\|x-x_{i}\right\| \leqslant\left\|x-x_{j}\right\|, \forall j \in I\right\}
$$

where $i \in I=\{1, \ldots, N\}$. Then $D_{i}$ is called the $\operatorname{Dirichlet}\left(\right.$ Voronoi) cell of $x_{i}$. The set $\left\{D_{1}, \ldots, D_{N}\right\}$ is a partition of $S^{3}$. Each $D_{i}$ is a spherical polygon, i.e., its boundary consists of finitely many pieces of great circle arcs [22,23]. It is known that the cell structure of 32 and 37 -electrons resembles the $C_{60}$ and $C_{70}$ fullerenes, respectively [22, 23, 40]. If the centers of polygonal faces of a globally optimal configuration of 32 electrons on the sphere $S^{3}$ are linked (this process is called as face-dual operation [40]), a similar configuration of $C_{60}$ molecule will be obtained. Except for $C_{60}, C_{70}$ and $C_{50}$, most fullerenes from $C_{20}$ to $C_{70}$ with even-numbered carbon atoms have relatively low symmetries [40]. We have found that the cell structure of 14-electrons on $S^{3}$ has a similar property as above with respect to 1energy $\omega\left(1, P_{N}^{3}\right)$ and is close to a globally optimal configuration of 24-electrons on $S^{3}$. Furthermore, we have observed an interesting phenomenon: If we pile up a globally optimal structure of 14 -electrons and its face-dual structure on $S^{3}$, we will get a structure that is close to a globally optimal configuration of 38 -electrons on $S^{3}$. We call this process as structure-piling operation.

The energy relationships among the globally optimal configurations of $N=$ $14,24,38$ are presented in the Tables 2, 3 and 4 . Mass center is referred as the intersection of the sphere $S^{3}$ and a radius passing through the mass center of each polygonal face in a globally optimal configuration of $N=14$. Dirichlet center is referred as the point in a Dirichlet cell that has equal distance to every vertex of polygonal face in a globally optimal configuration of $N=14$. The energies corresponding to mass centers and Dirichlet centers for $N=24,38$ is presented in Table 2. The structures corresponding to these centers are close to globally optimal configurations. After these structures are relaxed, we get the globally min-

Table 2. The energy from face-dual and structure-piling operations

| N | Optimal energy | Mass center | Dirichlet center |
| :--- | ---: | :---: | :---: |
| 14 | 69.3063632966 |  |  |
| 24 | 223.3470740518 | 224.9053099640 | 226.0894818638 |
| 38 | 593.0385035665 | 593.4042805188 | 593.3853109876 |

Table 3. The energy after relaxation of approximating configuration

| N | Optimal energy | Mass center | Dirichlet center |
| ---: | ---: | :---: | :---: |
| 14 | 69.3063632966 |  |  |
| 24 | 223.3470740518 | 223.3470740545 | 223.3470740537 |
| 38 | 593.0385035665 | 593.0385035665 | 593.0385035666 |

imal energies for $N=24,38$ (see Table 3 ). The distribution of globally minimal energy for $N=38$ is presented in Table 4 . The energies corresponding to the sub-configurations for $N=14,24$ is slightly higher than their globally minimal energies.

An open question: Given the number of electrons $N$, can a globally optimal configuration for $N$-electrons on the unit sphere $S^{3}$ in the 3-dimensional space be obtained through a series of face-dual and structure-piling operations, i.e., is there a finite sequence $\left\{N_{i} \mid i=1, \ldots, k\right\}$ such that $2 \leqslant N_{1}<N_{2}<\cdots<N_{k}=N$ and a globally optimal configuration of $N_{i}$ electrons on $S^{3}$ can be obtained from that of $N_{i-1}$ electrons through either face-dual operation or structure-piling operation? If yes, what is the minimal integer $N_{1}$ for the given $N$ ?

## 6. Concluding Remarks

The Spherical Code (SC) problem is considered in this paper using a formulation based on bilevel optimization. From this formulation, we introduce the concept

Table 4. Distribution of the globally minimal energy $(N=38)$

| N | Optimal Energy | Mass Center | Dirichlet Center |
| ---: | ---: | ---: | ---: |
| 14 | 69.3063632966 | 69.3069040459 | 69.3069040877 |
| 24 | 223.3470740518 | 225.2370473819 | 225.2370506152 |
| 38 | 593.0385035665 | 593.0385035665 | 593.0385035666 |

of $L$-balanced spherical code and present a new approach, the Point Balance Algorithm (PBA), for searching for a 1-balanced spherical code. Since an optimal solution of the SC problem must be one of 1-balanced spherical codes, PBA can be used easily to search efficiently for an extremal spherical code of the Spherical Code problem on the unit sphere in the $n$-dimensional space $\mathfrak{R}^{n}$. In addition, we discuss the implementation issues of PBA. Some putative global optimal numerical results for the Fekete problem in 3, 4 and 5-dimensional spaces are also reported. Note that PBA can be extended to search for a $L$-balanced spherical code of the SC problem or used as a general strategy in solving other optimization problems. Finally, an open question about the geometry of Fekete points on the unit sphere in 3-dimensional space is posed.

## Acknowledgements

The authors would like to thank Prof. C. Floudas, Prof. E. B. Saff, and Prof. S. Smale for valuable suggestions and comments on an earlier draft of the paper.

## References

1. Altschuler, E.L., Williams, T.J., Ratner, E.R. and Wooten, F.(1994), Method of constrained global optimization, Physical Review Letters 72(17): 2671-2674.
2. Björck, G. (1956), Distributions of positive mass which maximize a certain generalized energy integral, Ark. Mat. 3: 255-269.
3. Branch, M.A. and Grace, A. (1996), MATLAB Optimization Toolbox : User's Guide. MathWorks, Inc., Natick, Massachusetts.
4. Conway, J.H. and Sloane, N.J.A. (1993), Sphere Packing, Lattices and Groups. 2nd edn., Springer-Verlag, New York.
5. Dahlberg, B.E.J. (1978), On the distribution of Fekete points, Duke Mathematical Journal 45: 537-542.
6. Edmundson, J.R. (1992), The distribution of point charges on the surface of a sphere, Acta Crystallographica A48: 60-69.
7. Erber, T. and Hockney, G.M. (1991), Equilibrium configurations of $N$ equal charges on a sphere, Journal of Physics A: Mathematical and General 24: L1369-L1377.
8. Glasser, L. and Every, A.G. (1992), Energies and spacings of point charges on a sphere, Journal of Physics A: Mathematical and General 25: 2473-2482.
9. Goldberg, M. (1967), Virues and a mathematical problem, Journal of Molecular Biology 24: 337-338.
10. Goldberg, M. (1970), The packing of equal circles in a square, Math. Mag. 43: 24-30.
11. Hardin, R.H., Sloane, N.J.A. and Smith, W.D. (1994), Minimal energy arrangements of points on a sphere. In http://www.research.att.com/~njas/electrons/index.html.
12. Habichit, W. and van der Waerden, B.L.(1951), Lagerung von punkten auf der kugel, Math. Annalen 123: 223-234.
13. Kuijlaars, A.B.J. and Saff, E.B. (1998), Asymptotics for minimal discrete energy on the sphere, Transactions of the American Mathematical Society 350(2): 523-538.
14. Lewis, R.M. and Torczon, V. (1999), Pattern search algorithms for bound constrained minimization, SIAM Journal on Optimization 9(4): 1082-1099.
15. Melissen, J.B.M. (1997), Packing and Coverings with Circles. Ph.D. thesis, University Utrecht.
16. Maranas, C.D., Floudas, C.A. and Pardalos, P.M. (1995), New results in the packing of equal circles in a square, Discrete Mathematics 142: 287-293.
17. Migdalas, A., Pardalos, P.M. and Värbrand, P. (eds) (1998), Multilevel Optimization: Algorithms and Applications, Kluwer Academic Publishers.
18. Nurmela, K.J. (1995), Constructing Spherical Codes by Global Optimization Methods. Research Reports A32, Dept. of Computer Science, Helsinki University of Technology, Finland.
19. Pardalos, P.M. and Deng, X. (1997), Complexity issues in hierarchical optimization, In DIMACS series, Mathematical Hierarchies in Biology, American Mathematical Society, Vol. 37: 219-224.
20. Pardalos, P.M. and Schnitger, G. (1988), Checking local optimality in constrained quadratic programming is NP-hard, Operation Research Letters 7: 33-35.
21. Rakhmanov, E.A., Saff, E.B. and Zhou, Y.M. (1994), Minimal discrete energy on the sphere, Mathematical Research Letters 1: 647-662.
22. Rakhmanov, E.A., Saff, E.B. and Zhou, Y.M. (1995), Electrons on the sphere, In Ali, R.M., Ruschweyh, St. and Saff, E.B., (eds),Computational Methods and Function Theory World Scientific, Singapore, pp. 111-127.
23. Saff, E.B. and Kuijlaars, A.B.J. (1997), Distributing many points on a sphere, The Mathematical Intelligencer 19(1): 5-11.
24. Shub, M. and Smale, S. (1993), Complexity of Bezout's theorem III: condition number and packing, Journal of Complexity 9: 4-14.
25. Sloane, N.J.A. Spherical Codes. In http://www.research.att.com/ njas/
26. Smale, S. (2000), Mathematical problems for the next century, In Mathematics: Frontiers and Perspectives 2000, American Mathematical Society, pp. 271-294; Mathematical Intelligencer 20(2): 7-15.
27. Stolarsky, K.B. (1975), Spherical distributions of $N$ points with maximal distance sums are well spaced, Proc. Amer. Math. Soc. 48: 203-206.
28. Tammes, P.M.L. (1930), On the origin of number and arrangement of the places of exit on the surface of pollen grains. Recueil Travaux Botaniques Néerlandais 27: 1-84.
29. Tarnai, T. (1984), Spherical circle-packing in nature, practice and theory, Topologie Structurale 9: 39-58.
30. Torczon, V. (1997), On the convergence of pattern search algorithms, SIAM Journal on Optimization 7(1): 1-25.
31. Tóth, L.F. (1949), On the densest packing of spherical caps, Amer. Math. Monthly 56: 330-331.
32. Tóth, L.F. (1964), Regular Figures. MacMillan.
33. Tsuji, M. (1959), Potential Theory in Modern Function Theory. Maruzen Co., Ltd., Tokyo.
34. van der Waerden, B.L. (1952), Punkte auf der kugel. drei zusätze, Math. Annalen 125: 213-222; corrigendum 152 (1963): 94.
35. Wagner, G. (1989), On the product of distances to a point set on a sphere, J. Austral. Math. Soc. A 47: 466-482.
36. Wagner, G. (1990), On the means of distances on the surface of a sphere (lower bounds), Pacific J. Math. 144: 389-398.
37. Wagner, G. (1992), On the means of distances on the surface of a sphere II (upper bounds), Pacific J. Math. 153: 381-396.
38. Whyte, L.L. (1952), Unique arragements of points on a sphere, Amer. Math. Monthly 59: 606611.
39. Wyner, A.D. (1969), On coding and information theory, SIAM Review 11: 317-346.
40. Zhang, B.L., Wang, C.Z., Ho, K.M., Xu, C.H. and Chan, C.T. (1992), The geometry of small fullerene cages: $C_{20}$ to $C_{70}$, Journal of Chemical Physics, 97(7): 5007-5011.
41. Zhou, Y.M. (1995), Arrangements of Points on the Sphere. Ph.D. thesis, Univ. of South Florida.

[^0]:    * The research of the first author was supported by the China Scholarship Council while the author was visiting the Department of Industrial and Systems Engineering, University of Florida, Gainesville, USA. The research of the second author was partially supported by NSF under Grants DBI 9808210 and EIA 9872509.

